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Abstract

We investigate the effectiveness of a finite volume method incorporating radial basis functions for simulating nonlinear
diffusion processes. Past work conducted in two dimensions is extended to produce a three-dimensional discretisation that
employs radial basis functions (RBFs) as a means of local interpolation. When combined with Gaussian quadrature inte-
gration methods, the resulting finite volume discretisation leads to accurate numerical solutions without the need for very
fine meshes, and the additional overheads they entail.

The resulting nonlinear, algebraic system is solved efficiently using a Jacobian-free Newton–Krylov method. By employ-
ing the method as an extension of existing shape function-based approaches, the number of nonlinear iterations required to
achieve convergence can be reduced while also permitting an effective preconditioning technique.

Results highlight the improved accuracy offered by the new method when applied to three test problems. By successively
refining the meshes, we are also able to demonstrate the increased order of the new method, when compared to a tradi-
tional shape function-based method. Comparing the resources required for both methods reveals that the new approach
can be many times more efficient at producing a solution of a given accuracy.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical solution of partial differential equations (PDEs) is an important problem in many fields of
scientific and industrial simulation. The finite volume method, originally derived in [33], has proved particu-
larly popular with computational fluid dynamicists for simulating a wide range of important applications and
physical processes [1,2,5,28,18,22,14,35,42–44]. The attraction of the method lies in both its conservative nat-
ure and ability to be implemented on both structured or unstructured meshes.
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The basic principle of the finite volume method sees the discretisation of the solution domain into a set
of non-overlapping finite volumes and thereafter, the integral representation of the underlying conservation
laws are approximated over these volumes using some appropriate numerical strategy. The process usually
commences with the generation of a mesh that comprises, for example, hexahedral or tetrahedral elements
in three dimensions. In the vertex-centred approach the computed quantities are stored at the vertices of
the elements and the vertex values of the dependent variable play an important role in the interpolation
methods required to reconstruct fluxes. Traditionally, the midpoint rule has been the favoured method
to approximate the surface integrals involving these fluxes. However, as has been noted previously
[21,31] this quadrature rule achieves second order accuracy only when the flux evaluations are sufficiently
accurate. To this end, a variety of techniques have been explored to reconstruct the fluxes at the face cent-
roids to at least second order accuracy using some set of strategically chosen local nodal values of the
dependent variable. Recently, some authors have proposed gradient approximations using either Green–
Gauss reconstruction techniques or least squares based methods [2,6,20,22,14,44] to achieve this second
order spatial accuracy.

Rather than extend or improve upon this existing body of work, we investigate the possibility of using alter-
native methods of interpolation that might also yield high-order gradient and flux approximations. The
method of radial basis functions (RBFs) is one such method of scattered data interpolation [37]. Its renowned
high accuracy, particularly when using the multiquadric basis function [16] has seen it find application in a
diverse range of fields. In the review paper [17], applications of multiquadrics to the fields of geodesy, geophys-
ics, surveying, mapping, photogrammetry, remote sensing, signal processing, geography, digital terrain models
and hydrology are presented. Indeed, for many years RBFs have even been used to solve PDEs, through the
use of collocation methods [12,19,23,27]. However, the collocation approach does not share many of the desir-
able properties of the finite volume method, such as local conservation and the ability to work with sparse
Jacobian matrices. Additionally, the overhead of using RBFs with large three-dimensional point sets can
be substantial due to the high cost in determining the RBF coefficients via the solution of a large, dense matrix
system.

Past work [29] has shown that the method of radial basis functions can be successfully applied as a means of
local gradient interpolation in a two-dimensional finite volume framework. When combined with Gaussian
quadrature methods for integration, the precision of the resulting discretisation allows for accurate solutions
to be generated using coarse meshes. The use of RBFs as local interpolants, rather than global interpolants,
maintains the sparsity of the Jacobian matrix and greatly reduces the computational burden of computing the
RBF coefficients. Furthermore, careful solution of the local RBF linear systems using a truncated singular
value decomposition ensures accurate gradient estimates for use in the flux reconstruction at the finite volume
cell faces.

In this work we extend the two-dimensional framework described in [29] to three dimensions, over
unstructured, tetrahedral meshes. The generation and optimisation of such meshes can be costly, and obtain-
ing high accuracy through refined meshes can involve the solution of very large nonlinear systems. Thus we
consider the ability of a method to achieve high accuracy on relatively coarse meshes to be a valuable
property.

In addition to an accurate discretisation, an effective finite volume method must also employ some means of
solving the resultant nonlinear system of equations. Inexact Newton methods implemented using a Jacobian-
free, Krylov-based linear solver [3,4,8,9,24,25,34] are growing in popularity as a means for solving these kinds
of problems [26]. We implement one such method, and demonstrate how a two-stage solution process, using
the method of RBFs as a ‘‘corrector’’ to a traditional shape function-based approach, can be beneficial at
improving both the convergence of the inner (linearised) iterations and the outer (nonlinear Newton)
iterations.

This paper comprises two main sections. In Section 2 we present the methods of integration and interpo-
lation in a three-dimensional framework, along with the proposed two-stage solution process and associated
method of preconditioning. In Section 3 we present the results of numerical experiments that demonstrate the
accuracy of the method, and its efficiency compared to a traditional shape function-based approach on a
refined mesh. Finally in Section 4 the work is concluded and the key findings summarised. We also hint at
the future research directions for this new finite volume discretisation strategy.
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2. Finite volume formulation

The finite volume method is built upon the idea of constructing control volumes around every node in the
mesh. In this work a vertex-centred scheme over unstructured, tetrahedral meshes is considered. To construct
the control volumes, each tetrahedral element is divided into four sub-control volumes. The external faces of
each sub-control volume are constructed by connecting the element’s centroid, the centroids of its faces, and
the midpoints of its edges. This forms a hexahedral sub-control volume, as shown in Fig. 1. Sub-control vol-
umes from neighbouring elements combine to form the resulting control volume, an example of which is illus-
trated in Fig. 2(a). Fig. 2(b) depicts three adjoining control volumes, one of which shares some of its faces with
the domain boundary.

The PDE under consideration in this work is the following nonlinear, steady-state diffusion equation
$ �D$uþ S ¼ 0; ð1Þ

where D ¼ diagðDxx;Dyy;DzzÞ and Dxx, Dyy , Dzz along with S can be nonlinear functions of u.

Integration over an arbitrary control volume Vi with boundary surface ri enables (1) to be written in con-
trol volume form:
Z Z

ri

D$u � n̂dr

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusive flux

þ
Z Z Z

V i

S dV
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

source

¼ 0: ð2Þ
vertex

edge
midpoint

face
centroid

element
centroid

Fig. 1. A sub-control volume.

Fig. 2. (a) Single control volume; (b) three adjoining control volumes.



Fig. 3. Control volume faces and normals.
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The discretisation of (2) relies on computing approximations to the diffusive flux and source terms using only
the quantities ui; i ¼ 1; . . . ;N : the values of u at the N mesh nodes xi; i ¼ 1; . . . ;N .

2.1. Integration

Numerical quadrature rules can be used to approximate both the diffusive flux and source terms of (2). In
the case of the diffusive flux, the integral over the surface ri is expressed as the sum of integrals over each con-
trol volume face rij (see Fig. 3):
Z Z
ri

D$u � n̂dr ¼
XNfi

j¼1

Z Z
rij

D$u � n̂dr; ð3Þ
where ri comprises the Nfi faces rij; j ¼ 1; . . . ;N fi . In the case of the source component, a single volume inte-
gral approximation is required.

In the classical finite volume theory, a single point quadrature rule is often used for both the diffusive flux
and source terms, yielding the approximations
Z Z
rij

D$u � n̂dr � ½D$u � n̂�mij
AðrijÞ ð4Þ
and
 Z Z Z
V i

S dV � SiDV i ð5Þ
respectively, where mij is the centroid of face rij, AðrijÞ is its area, and DV i is the volume of control volume Vi.
In this work, we also implement four and eight-point Gaussian quadrature rules in place of (4) and (5)

respectively. For the diffusive flux surface integrals, each control volume face rij is quadrilateral in shape (refer
again to Fig. 3), and so by mapping onto the square ½�1; 1�2, four-point Gaussian quadrature in two dimen-
sions can be applied. In the case of the source volume integral, denote by V ij the jth sub-control volume of
control volume Vi which has N vi sub-control volumes altogether. Each V ij for j ¼ 1 . . . Nvi is hexahedral in
shape, and so by mapping onto the cube ½�1; 1�3, eight-point Gaussian quadrature in three dimensions can
be applied. The required mappings can be found in most finite element texts ([7] for example). Here we denote
them symbolically by rij and pij, respectively:
rij : x ¼ rijðn; gÞ; �1 6 n 6 1; �1 6 g 6 1;

V ij : x ¼ pijðn; g; fÞ; �1 6 n 6 1; �1 6 g 6 1; �1 6 f 6 1:
Using these transformations, and the standard Gauss-Legendre quadrature points t1 ¼ �
ffiffi
3
p

3
, t2 ¼

ffiffi
3
p

3
and

weights w1 ¼ w2 ¼ 1, we obtain
Z Z
rij

D$u � n̂dr �
X2 X2

wawb½D$u � n̂�rijðta;tbÞ
@rij

@ðn; gÞ

����
����
ðt ;t Þ

ð6Þ

a¼1 b¼1 a b
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and
 Z Z Z
V ij

S dV �
X2

a¼1

X2

b¼1

X2

c¼1

wawbwc½S�pijðta;tb ;tcÞ
@pij

@ðn; g; fÞ

����
����
ðta;tb;tcÞ

; ð7Þ
where
@rij

@ðn;gÞ

��� ��� and
@pij

@ðn;g;fÞ

��� ��� are the Jacobians of the transformations.

Note that Eqs. (4)–(7) require the evaluation of u and its gradient at specific quadrature points. In the next
section we examine methods of interpolation for approximating these values, based only on the values
ui; i ¼ 1; . . . ;N .

2.2. Interpolation

The method of shape functions can be used in a finite volume discretisation to approximate the required
values of u and $u for use in (4)–(7) [38]. Over each tetrahedral element, the standard shape function
interpolant
sðxÞ ¼
X4

j¼1

ujN jðxÞ ð8Þ
is fitted, resulting in a linear interpolation of the values of u at the element vertices. For the definitions of the
shape functions Nj, see [7]. Note that in this case the gradient computed by means of this interpolant,
$sðxÞ ¼
X4

j¼1

uj$N jðxÞ ð9Þ
is constant throughout the element.
Using the finite element shape functions in this way leads to the so-called ‘‘control volume-finite element’’

discretisation, or CV-FE. Although widely used for its simplicity and efficiency, it can fail to achieve second-
order accuracy in some cases, particularly for highly anisotropic problems [21,22].

To effectively model problems where the gradient may vary significantly over an element, techniques such
as least squares and Green–Gauss reconstruction have been used [2,6,20,22,14,44]. In this work, we investigate
an alternative method of interpolation, namely the method of radial basis functions. We will see that this
method can be thought of as an extension of the shape function approach, and in fact can be applied on
top of the basic CV-FE method, in effect acting as a ‘‘corrector’’ to the CV-FE solution.

The method of radial basis functions, or RBFs, is a method of scattered data interpolation over Rm that
may use an arbitrary number of nodes xj; j ¼ 1; 2; . . . n. An RBF interpolant through these nodes has the fol-
lowing form [37]:
sðxÞ ¼
Xn

j¼1

kj/ðkx� xjkÞ þ
Xm

k¼0

ckqkðxÞ; ð10Þ
where the function / : R! R is a radial basis function [37], and the qk form the standard basis for the space of
m-variate linear polynomials (in three dimensions, q0 ¼ 1, q1 ¼ x, q2 ¼ y, q3 ¼ z). Different choices of / give
rise to different RBF interpolants. Some popular choices are the cubic function /ðrÞ ¼ r3, the thin plate spline
/ðrÞ ¼ r2 logðrÞ, the linear function /ðrÞ ¼ r and the multiquadric /ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2
p

, which incorporates the
parameter c2 [37]. It is shown in [37] that for these choices of /, the RBF interpolant (10) is infinitely differ-
entiable on any region that excludes the interpolation points. Thus, $s is given by
$s ¼
Xn

j¼1

kj
x� xj

kx� xjk

� �
/0ðkx� xjkÞ þ

Xm

k¼1

ckek; ð11Þ
where ek is the kth standard basis vector in Rm.
The conditions imposed on the RBF interpolant in order to determine the coefficients kj and ck are the inter-

polation constraints
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sðxjÞ ¼ uj; j ¼ 1; 2; . . . ; n; ð12Þ

along with a set of orthogonality constraints
Xn

j¼1

kjqkðxjÞ ¼ 0; k ¼ 0; 1; . . . ;m ð13Þ
so that the coefficients can be determined by solving the following square matrix system [37]:
U P

PT 0

� �
k

c

� �
¼

f

0

� �
; ð14Þ
where
ðUÞij ¼ /ðkxi � xjkÞ; i ¼ 1; . . . ; n; j ¼ 1; . . . ; n

ðPÞi;kþ1 ¼ qkðxiÞ; i ¼ 1; . . . ; n; k ¼ 0; . . . ;m

ðkÞi ¼ ki; i ¼ 1; . . . ; n

ðcÞkþ1 ¼ ck; k ¼ 0; . . . ;m

ðfÞi ¼ ui; i ¼ 1; . . . ; n:
The necessity of solving (14) in order to compute the RBF coefficients makes it costly to fit a single inter-
polant covering the entire mesh. In fact, this is undesirable anyway, since doing so would result in a dense
Jacobian matrix within the Newton–Krylov method (see Section 2.3). Instead, the method of RBFs is best
applied locally, fitting one interpolant per element, incorporating a set of local nodes. This is entirely analo-
gous to the way in which shape functions are applied.

Indeed, note that with n = 4 in (10), constraints (12) and (13) imply that k1 ¼ k2 ¼ � � � ¼ kn ¼ 0, so that in
this case the RBF interpolant reduces to the shape function interpolant (8). Thus, RBF interpolation can be
thought of as an extension of shape function interpolation, or equivalently, linear shape functions in Rm are
just special cases of RBFs where the number of nodes is equal to mþ 1.

For simplicity, we also use a constant number of nodes in our RBF interpolations, though obviously this
number is greater than 4. These n nodes are selected in an iterative fashion: by including the element’s vertices,
the vertices of its nearest neighbours, the vertices of their neighbours, and so on, until the required number of
nodes has been selected. In this way, the points at which the interpolant is actually evaluated lie in the interior
of the set of nodes, thereby alleviating a well-known problem of RBF interpolations: that of poor accuracy at
points near the boundaries [10]. In practice, we find that the value n = 20 offers good accuracy without being
too costly.

Finally, it is well known that the matrix system (14) tends to be very ill-conditioned [37]. We therefore
employ the truncated singular value decomposition [15] to compute its solution. The overhead associated with
each singular value decomposition is small, since each matrix involves only a small, local set of nodes. In addi-
tion, storing this decomposition allows for efficient processing of multiple right hand sides, as is required
within a Jacobian-free Newton–Krylov method (see Section 2.3).
2.3. Solution of nonlinear system

The partial differential Eq. (1) is transformed into its finite volume discretised form through the discretisa-
tion process discussed in the previous sections. The result is a nonlinear system of equations
FðuÞ ¼ 0 ð15Þ

for the finite volume solution vector u ¼ ðu1; u2; . . . ; uN ÞT. The basic inexact Newton method for solving (15) is
the sequence of iterations [24]
uðnþ1Þ ¼ uðnÞ þ hnduðnÞ; ð16Þ
where the Newton step duðnÞ is obtained iteratively to satisfy
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kFþ JduðnÞk 6 gnkFk: ð17Þ

Here J ¼ @fi

@uj
is the Jacobian matrix and gn is the so-called forcing term [9], designed to avoid solving the

linear model beyond the point where reductions are no longer realised in the nonlinear residual kFk.
Whether shape functions or RBFs are employed in the evaluation of F, the use of local nodes in these inter-

polations ensures that J will be sparse [30,29]. Krylov subspace methods are the favoured means for finding
the solution of the linearised system satisfying (17) under such circumstances [26]. In this work, the GMRES
method [40] is used. It utilises the Krylov subspace
Km ¼ spanfr0; JMr0; ðJMÞ2r0; . . . ; ðJMÞm�1
r0g; ð18Þ
where r0 is the initial residual vector
r0 ¼ Fþ JMdu0; ð19Þ

and the matrix M is a right preconditioner.

In the absence of preconditioning, Krylov subspace methods such as GMRES do not require the Jacobian
matrix explicitly, but rather only its action on a vector, in the form of the Jacobian-vector product [26,41]. A
Jacobian-free implementation of the method can therefore be derived, whereby Jacobian-vector products are
approximated using the discrete, directional derivative [26]
Jv � Fðuþ evÞ � FðuÞ
e

: ð20Þ
Computing the shifted vector Fðuþ evÞ in (20) requires that the nodal values ui be shifted by the amounts evi,
and each element’s interpolation recomputed. This can be processed efficiently even when RBFs are being used
for local interpolations, by means of the saved singular value decompositions discussed in Section 2.2. Refer-
ring to (14), we see that changes to ui affect only the vector f on the right hand side: the matrix itself depends
only on the mesh geometry. Thus, by re-using the stored decompositions we can efficiently process each addi-
tional right hand side corresponding to shifted values of F.

2.4. Combining integration and interpolation

In Section 2.1 two methods of numerical integration were presented: one based on the midpoint rule and
the other on Gaussian quadrature. In Section 2.2, two methods for estimating the fluxes at integration points
were presented: shape functions and radial basis functions. Now the strategy for combining these methods will
be considered, such that an accurate solution to (1) is obtained without excessive computational cost.

Table 1 lists the pairings of the integration and interpolation methods used in this work. The midpoint rule
integration and shape function interpolation comprise the CV-FE method, which offers higher speed but lower
accuracy. The more accurate methods of Gaussian quadrature and radial basis functions are paired to provide
higher accuracy at lower speed. For ease of discussion, this RBF-based discretisation method will be referred
to as CV-RBF.

The method of CV-RBF is best thought of as a corrector, which is applied after the solution has already
been obtained using CV-FE. Thus, as per Table 1, there are two stages involved in obtaining the final solution.
Stage one uses CV-FE discretisation, which yields a first approximate solution, after which CV-RBF is applied
to obtain the final solution. In this way, the advantages of both methods are realised: the CV-FE method offers
a fast route to an approximate solution, and CV-RBF provides the necessary means to improve upon this
solution and obtain the final, accurate solution.
1
al pairings of integration and interpolation: two stages of the solution process

Method Speed Accuracy Integration Interpolation

CV-FE Higher Lower Midpoint rule Shape functions
CV-RBF Lower Higher Gaussian quadrature Radial basis functions
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We conclude this section by analysing the forms of the nonlinear component functions fi of (15). In the case
of CV-FE discretisation they take the form
fiðuÞ ¼
XNfi

j¼1

DðsiðmijÞÞ$siðmijÞ � n̂AðrijÞ þ SðuiÞDV i ð21Þ
while for CV-RBF, they take the form
fiðuÞ ¼
XNfi

j¼1

X2

a¼1

X2

b¼1

wawbDðsiðrijðta; tbÞÞÞ$siðrijðta; tbÞÞ � n̂
@rij

@ðn; gÞ

����
����
ðta;tbÞ

þ
XNvi

j¼1

X2

a¼1

X2

b¼1

X2

c¼1

wawbwcSðsiðpijðta; tb; tcÞÞÞ
@pij

@ðn; g; fÞ

����
����
ðta;tb;tcÞ

: ð22Þ
Because of the comparatively high cost of RBF interpolation, it is important to count precisely how many
such evaluations are required in a single evaluation of (22). To this end, let E denote the number of elements in
the mesh, and let Fb denote the number of element faces that lie on boundaries with non-Dirichlet boundary
conditions.

As discussed in Section 2, each tetrahedral element is composed of four sub-control volumes. Each sub-con-
trol volume has three external faces (refer again to Fig. 1), but there are only 4C2 = 6 distinct external faces per
element. In addition to these six control volume faces, any element face that lies on a boundary contributes
three more control volume faces through which fluxes must be computed. When using (22), each such com-
putation requires evaluation of DðsiÞ$si at four Gauss points.

At first, it would appear that the evaluation of the three components of $si along with si itself would take
four times as long as the evaluation of si alone. However, numerical experimentation shows that an efficient
RBF implementation that re-uses the values of r, /ðrÞ and /0ðrÞ can compute si and $si in approximately twice
the time it takes to evaluate si alone. Altogether then, the effective number of RBF evaluations is
2� 4� ð6E þ 3F bÞ, or 48E þ 24F b RBF evaluations required to evaluate the first term of (22).

The second term of (22) requires eight evaluations of si per sub-control volume. As there are four sub-con-
trol volumes per element, this amounts to 8� 4E ¼ 32E RBF evaluations altogether, making it the cheaper of
the two terms to evaluate.

2.5. Preconditioning

A widely-recognised technique for preconditioning in a Jacobian-free Newton–Krylov method is to con-
struct a preconditioner based on a Jacobian matrix from a simplified version of the problem [26]. The
two-stage solution approach discussed in the previous section readily permits such a technique: the CV-FE
Jacobian can be used as a cheap substitute for the CV-RBF Jacobian for the purposes of preconditioning.

In this work we use a sparse approximate inverse preconditioner based on Frobenius norm minimisation, as
described in [39] and the references therein. A matrix M is constructed, that satisfies
M ¼ min
M�2M

kI� JM�k2
F ð23Þ
for the set of matrices M having the same sparsity pattern as the CV-RBF Jacobian matrix. Using the Frobe-
nius norm is the key to this method, for it allows problem (23) to be decomposed into N independent least
squares problems [39]:
kI� JMk2
F ¼

XN

j¼1

kej � Jmjk2
2; ð24Þ
where ej is the jth standard basis vector in RN , and mj is the jth column of M. Each vector mj will have nonzero
entries only where the Jacobian sparsity pattern dictates, so each problem (24) is solvable using standard direct
decomposition methods.
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In practice, the computation of each column of M can be too expensive when computed using the CV-RBF
Jacobian. Instead, we use the much cheaper CV-FE Jacobian in (24). Using this hybrid approach, where the
sparsity pattern is dictated by the CV-RBF Jacobian, and the values themselves by the CV-FE Jacobian, the
resultant preconditioner has been found to be effective at preconditioning both stages of the two-stage solution
process. This approach is also supported by the notion discussed in Section 2.2 that the method of shape func-
tions can be considered to be a special case of the method of radial basis functions given in (10).
3. Results and discussion

In this section we test the effectiveness of the methods described in the previous sections by applying them
to three test problems. In order to exactly measure the accuracy of the numerical solutions, we focus exclu-
sively on problems that have known analytical solutions. Each test problem is based on the steady-state dif-
fusion Eq. (1) on the unit cube. For simplicity in discussing and visualising the solutions, the problem is
interpreted as a heat transfer problem. Different choices of D and S, along with different boundary conditions,
give rise to the three different test problems.

3.1. Test problems

The first two test problems involve the linear, steady-state heat diffusion problem obtained by taking a con-
stant, diagonal D along with S ¼ g0 (constant) in (1). The boundaries x ¼ 0, y ¼ 0 and z ¼ 0 are insulated,
while the boundaries x ¼ 1, y ¼ 1 and z ¼ 1 are subject to Newtonian cooling with external temperature u1
and heat transfer coefficient h. The solution to this problem can found as per [32]:
uðx; y; zÞ ¼
X1
n¼1

X1
m¼1

X1
k¼1

aðn;m; kÞX ðln; xÞY ðkm; yÞZðcm; zÞ
ðDxxl2

n þ Dyyk
2
m þ Dzzc2

kÞNxðlnÞN yðkmÞNzðckÞ
;

0 6 x 6 1; 0 6 y 6 1; 0 6 z 6 1 ð25Þ
where the eigenfunctions are given by
X ðl; xÞ ¼ l cosðlxÞ; Y ðk; yÞ ¼ k cosðkyÞ; Zðc; zÞ ¼ c cosðczÞ;

the normalisation factors are given by
NxðlÞ ¼
l2

2
1þ hDxx

hþ lD2
xx

� �
;

with similar expressions for NyðkÞ and N zðcÞ, and the eigenvalues are found by finding the roots of the tran-
scendental equation
tanðlÞ ¼ h
lDxx

;

with similar equations for k and c. Finally, aðn;m; kÞ is given by
aðn;m; kÞ ¼
Z 1

0

Z 1

0

Z 1

0

X ðln; nÞY ðkm; gÞZðck; fÞg0 dfdgdn:
The parameter values used for this problem are listed in Table 2. Note that Test Problem 1 uses
D ¼ diagð5; 5; 5Þ, while Test Problem 2 uses D ¼ diagð5; 5000; 5000Þ, with a view to providing an increasing
challenge to the numerical solution methods.

Three-dimensional visualisations of the analytic solution for the parameters listed in Table 2 are shown in
Fig. 4. Several isosurfaces have been drawn to help illustrate the behaviour of the solution. Fig. 4(a) illustrates
the symmetric nature of Test Problem 1, with its equal diffusivities, and Fig. 4(b) the near one-dimensional
nature of Test Problem 2, with the diffusion in the y and z directions dominant over that in the x direction.

The third test problem is based on a problem given in [24] and uses nonlinear diffusivity
Dxx ¼ Dyy ¼ Dzz ¼ u1:3 in (1). The source term is constructed by substituting the imposed solution



Fig. 4. Analytic solutions of: (a) Test Problem 1; (b) Test Problem 2.

Table 2
Physical parameters for Test Problems 1 and 2

Parameter Description Value

Dxx Thermal diffusivity in x direction 5 m2 s�1

Dyy Thermal diffusivity in y direction 5 m2 s�1 (Test Problem 1)
5000 m2 s�1 (Test Problem 2)

Dzz Thermal diffusivity in z direction 5 m2 s�1 (Test Problem 1)
5000 m2 s�1 (Test Problem 2)

g0 Source 10 K m�2 s�1

h Heat transfer coefficient 2 W m�2 K�1

u1 External temperature 20 K
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uðx; y; zÞ ¼ 10xyzð1� xÞð1� yÞð1� zÞe�ðx2þy2þz2Þ; 0 6 x 6 1; 0 6 y 6 1; 0 6 z 6 1 ð26Þ

into (1). On all boundaries, the Dirichlet condition u ¼ 0 is prescribed.

The zero condition on the boundaries makes three-dimensional visualisation of this solution awkward.
Fig. 5 depicts a single contour of the solution at z ¼ 0:5. The physical nature of the solution is that of a
hot interior with maximum temperature near the point (0.4,0.4, 0.4), with the temperature cooling further
away from this point and zero on the boundaries.

3.2. Meshes

Two examples of the unstructured, tetrahedral meshes used for these test problems are exhibited in Fig. 6.
They were generated using the mesh generator Gmsh [13] over a unit cube. A uniform edge length was
requested throughout the mesh, but naturally as these are unstructured meshes there is some variation in edge
lengths throughout the meshes.

3.3. Comparative accuracy of solutions

For the results presented in this section, the unstructured mesh comprising 1567 nodes and 7081 elements
illustrated in Fig. 6(a) was used to solve each test problem. In computing the solution errors, the error measure
kuðeÞ�uðaÞk2

kuðeÞk2
was used, where superscript (e) symbolises the exact, analytic solution and superscript (a) the approx-

imate, numerical solution.
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Fig. 5. Analytic solution of Test Problem 3. Contour at z ¼ 0:5.

Fig. 6. Unstructured tetrahedral meshes with: (a) 7081 elements; (b) 103,008 elements. Visualisations were produced using DistMesh [36].

Table 3
Error in solution for Test Problems 1, 2 and 3

Test Problem 1 Test Problem 2 Test Problem 3

CV-FE 4.40E � 05 9.33E � 04 2.90E � 02
CV-RBF 1.30E � 06 5.81E � 05 6.55E � 04
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The multiquadric radial basis function was used throughout, for its high accuracy, as observed in previous
work such as [11,17,29]. The ‘‘default’’ value of its parameter, c2 ¼ 1, was found by numerical experiment to
be acceptable. Mindful of the computational costs associated with using too many nodes per interpolation, we
chose to use n ¼ 20 nodes for every element’s RBF interpolation.

The results of solving each test problem using both CV-FE and CV-RBF are given in Table 3. We see that
in each case the CV-RBF solution is between one and two orders of magnitude more accurate than that
achieved with CV-FE. The best accuracy is achieved for both methods on the isotropic Test Problem 1. Test
Problem 2, with its much stronger diffusion in the y and z directions, poses more difficulty, and the accuracy of
both methods is reduced. For the nonlinear Test Problem 3, the accuracy is further reduced, however the
improvement offered by CV-RBF over CV-FE is greatest for this problem.

The contour plots in Fig. 7 illustrate the two numerical solutions for Test Problem 2. The contours are
shown in the plane z ¼ 0:5 and the analytic solution contours are also drawn for comparison. The CV-FE
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solution shown in Fig. 7(a) has failed to reproduce the correct temperature variations in the x direction. This
failure is explained by the large anisotropic ratio present in this problem: the diffusivities in the y and z direc-
tions are one thousand times greater than the diffusivity in the x direction, and the CV-FE method has failed
to adequately capture the much subtler diffusion in the x direction.

Using CV-RBF results in the much better solution shown in Fig. 7(b). The more accurate discretisation has,
by and large, captured the correct temperature variation in the x direction. The approximate solution contours
are now just slightly offset from their correct positions, and there are none of the spurious or missing contours
that were evident in Fig. 7(a).

In Fig. 8 the solution contours obtained for Test Problem 3 are shown. From Fig. 8(a) it is evident that the
main weakness of the CV-FE numerical solution is its failure to adequately capture the correct behaviour in
the interior, where the temperature is highest and the diffusion is strongest. In Fig. 8(b) the corresponding
CV-RBF solution is almost a perfect visual match for the analytic solution. We note that the apparent oscil-
lations in the solution contours are an artefact of the visualisation process and are not present in the actual
solutions.

3.4. Estimated order of methods

In this section we estimate and compare the orders of accuracy achieved by CV-FE and CV-RBF by plot-
ting the error in the solution against the average control volume face edge length and observing how this error
decreases as the mesh is refined. As we are using unstructured meshes we expect some degree of variation in the
results, caused by the variation in edge lengths present in each mesh.
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The error measurement used for these tests is derived from the norm
kuðeÞ � uðaÞkp; ð27Þ

where as before superscript (e) symbolises the exact, analytic solution and superscript (a) the approximate,
numerical solution, and p is 1, 2, or 1.

As the mesh is refined, the number of nodes in the mesh, N, increases. For p ¼ 1 and p ¼ 2, the error mea-
surement (27) involves a summation over N, which must be compensated for if the measurements are to be
legitimately compared. (The infinity norm is immune to this problem, as it is simply the maximum error in
the mesh.) The appropriate scaling factors, based on the definitions of the one and two-norms, are 1

N and
1ffiffiffi
N
p respectively. Thus, the final, comparable measures, are:
error ¼ 1

N

XN

i¼1

uðeÞi � uðaÞi

��� ���; ð28Þ

error ¼ 1ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

uðeÞi � uðaÞi

� �2

vuut ð29Þ
and
error ¼ max
i¼1...N

uðeÞi � uðaÞi

��� ��� ð30Þ
for the one, two and infinity-norms, respectively.
For each test problem, the solution is computed using CV-FE discretisation and using CV-RBF discretisa-

tion with n ¼ 20 nodes per interpolation. The order, q, of each method is estimated by fitting the curve
error ¼ constant � hq ð31Þ

using logarithmic regression on the ðh; errorÞ ordered pairs, where h is the average control volume face edge
length, and error is measured as per Eqs. (28)–(30).

Fig. 9 shows logarithmic plots of these ordered pairs, along with the fitted curves (31), which appear linear
on the log-log scale. The plots show that in all cases there is a reduction in solution error as the mesh is refined.
Furthermore, there is a close agreement between the observed errors and the fitted curves for all three test
problems and all six error measurements.

Table 4 lists the estimated orders of accuracy computed for each test problem, under the three different
error measures, for both CV-FE and CV-RBF. The observed orders are largely consistent across all three
error measures, with perhaps only slight disagreement in the infinity-norm against the other two measures
for the CV-RBF method. This disparity could be attributed to the greater spread of infinity-norm values
(marked with stars in Fig. 9) as compared to the other measures, resulting in a less accurate regression fit.

The order of the CV-FE method is consistently estimated across all three error measures. Of particular note
is the CV-FE method’s failure to achieve second order accuracy for Test Problem 2. This result is consistent
with those reported elsewhere [21,22], where the CV-FE method fails to accurately model problems with very
high anisotropic ratios. The CV-RBF method has no such difficulty for this problem, and in fact it records its
highest order of accuracy in this case, estimated as fourth order. For Test Problems 1 and 3, the CV-FE
method does exhibit second order accuracy, while the CV-RBF method is consistently measured as having
between third and fourth order accuracy.

3.5. Linear and nonlinear iterations

In Section 2.4, it was discussed how the CV-RBF method was best applied as part of a two-stage solution
process, with CV-FE iterations comprising the first stage. In this section, we investigate how this approach can
reduce the number of CV-RBF iterations required for convergence. We also investigate the effect of the pre-
conditioner discussed in Section 2.5, whereby combined CV-FE/CV-RBF information is used to construct a
preconditioner to use throughout both stages of the solution process.

For these tests, we examine the number of CV-FE and CV-RBF iterations that are required to solve Test
Problem 3 on the mesh depicted in Fig. 6(a). It should be noted that with n ¼ 20 nodes per interpolation, each



Table 4
Estimated orders of accuracy for solving Test Problems 1, 2 and 3

Problem Method L1=N L2=
ffiffiffiffi
N
p

L1

Test Problem 1 CV-FE 2.0 2.1 1.9
CV-RBF 3.4 3.5 3.0

Test Problem 2 CV-FE 0.4 0.4 0.4
CV-RBF 4.0 4.2 4.7

Test Problem 3 CV-FE 1.8 2.1 2.0
CV-RBF 3.6 3.8 3.5
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1422 T.J. Moroney, I.W. Turner / Journal of Computational Physics 225 (2007) 1409–1426
CV-RBF iteration can be an order of magnitude slower than each CV-FE iteration. Thus any approach that
can achieve a reduction in the number of CV-RBF iterations is to be highly regarded.

Fig. 10 depicts the convergence curves for Test Problem 3 when solved using the two-stage method with, and
without, preconditioning. Several features are apparent. First, the use of a forcing term (Section 2.3) has not com-
pletely eliminated oversolving from the process, but oversolving is mostly confined to the much cheaper CV-FE
iterations. Second, the switch from CV-FE to CV-RBF is accompanied by a sudden increase in the residual norm,
as the final CV-FE solution is re-assessed under the more accurate CV-RBF discretisation.

Third, by comparing Fig. 10(a) and (b), it is evident that the preconditioner has been effective in reducing
the number of CV-FE and CV-RBF iterations required for convergence. For this nonlinear problem, the pre-
conditioner was computed once, as per Section 2.5, at the beginning of the solution process and held constant
throughout. Its effect was to more than halve the total number of iterations required, but more important, to
reduce the number of CV-RBF iterations by almost a factor of four.
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What is not apparent from Fig. 10 is whether the two-stage process itself contributes to reducing the number of
CV-RBF iterations. In fact, the jump in the residual norm at the transition from stage one to stage two perhaps
suggests that the impact of the CV-FE iterations is minimal. However, Fig. 11 shows that this is not the case.

Fig. 11 compares the number of CV-RBF iterations required for convergence, when used as either a one-
stage or two-stage process. The two-stage curve is as per Fig. 10(a), whereas the one-stage curve corresponds
to solving the entire problem using only CV-RBF, without the benefit of the initial CV-FE iterations. The fig-
ure shows how it takes between three and four times as many CV-RBF iterations to solve this problem when
the initial CV-FE stage is not employed.

In the final section of these numerical experiments we compare the total running time of a CV-FE-only
method, to the two-stage CV-FE/CV-RBF method, such that they obtain comparable accuracy for a given
problem.

3.6. Comparative resource requirements

In previous sections it has been demonstrated that the accuracy achieved by the two-stage CV-FE/CV-RBF
solution method is superior to that achieved by the CV-FE method alone. In producing this additional accu-



Table 5
Mesh sizes for the CV-FE method to achieve comparable accuracy to the CV-RBF method for Test Problem 3

Method Nodes Elements

CV-RBF 1567 7081
CV-FE 19,367 103,008

Table 6
Relative resource requirements for the CV-FE and CV-RBF methods (comparable accuracy) for Test Problem 3

Method Time Memory

CV-RBF 1.0 1.0
CV-FE 7.4 9.0
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racy however, the resource requirements are much more demanding. These additional resource requirements
must be taken into account when deciding if the method is beneficial overall.

An important question then, is whether the extra accuracy offered by the CV-RBF correction applied in
stage two compensates for the extra resources required to compute it. In this section, we examine how the
two-stage method fares in terms of efficiency, by comparing its resource requirements to those of a CV-FE-
only method over a refined mesh, such that the accuracy achieved by the two methods is equivalent.

In Section 3.3 we found that the numerical solution to Test Problem 3 was more than an order of magni-
tude more accurate when using CV-RBF. The mesh used for these tests was the 1567 node, 7081 element mesh
illustrated in Fig. 6(a). By successively refining this mesh, and solving using only CV-FE, a solution of com-
parable accuracy was eventually achieved, using the 19,367 node and 103,008 element mesh illustrated in
Fig. 6(b). Table 5 summarises these results.

To determine the relative costs of the two methods in achieving this solution, we measure the runtime and
memory usage of the CV-FE method over the fine mesh, as compared to the CV-RBF method over the coarse
mesh. Table 6 lists the relative time and memory requirements, using the CV-RBF method over the coarse
mesh as a baseline. We see that the use of a fine mesh with CV-FE has resulted in a seven-fold increase in
runtime and a nine-fold increase in memory consumption. Thus for this problem, the use of CV-RBF over
a coarse mesh offers a significant saving when it comes to generating a solution of the required accuracy.

4. Conclusions

A new three-dimensional finite volume discretisation method has been presented, incorporating radial basis
functions as a means of interpolation, along with Gaussian quadrature as a means of integration. Each RBF
interpolant incorporates only a local set of nodes, thereby ensuring it can be processed efficiently, and will not
destroy the sparsity of the Jacobian matrix. Truncated singular value decompositions are used to solve each
RBF matrix system, and to efficiently process additional right hand sides corresponding to the shifted function
values required for the inexact Newton–Krylov solver.

A Jacobian-free Newton–Krylov method is implemented to solve the resultant nonlinear system of equa-
tions. It is recognised that a two-stage solution process is beneficial, whereby traditional CV-FE discretisation
is used initially to solve the problem, before the solution is corrected using the more accurate CV-RBF dis-
cretisation. It is also recognised that the method of shape functions is actually a special case of RBFs, obtained
when the number of nodes used is 4 (in three dimensions). This fact is exploited as part of the two-stage solu-
tion process, whereby the CV-FE Jacobian matrix is used in computing an effective preconditioner for use in
the CV-RBF iterations.

Numerical experiments conducted on both linear and nonlinear test problems gauge the accuracy and effi-
ciency of the new method. The method is found to consistently achieve higher accuracy and higher order than
the traditional method based on shape functions. It is also shown that CV-RBF is more efficient at obtaining a
solution of given accuracy, compared to using CV-FE on a fine mesh.
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Future research in this area will see these ideas extended to allow the solution of advection–diffusion prob-
lems. In problems where the advective process dominates, the interaction of the method with techniques such
as upwinding and flux limiting, which are typically used to overcome nonphysical oscillations in the solution,
will be investigated.
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